Diophantine equations in primes: Density of prime points on affine hypersurfaces

نویسندگان

چکیده

Let F∈Z[x1,…,xn] be a homogeneous form of degree d≥2, and let VF∗ denote the singular locus affine variety V(F)={z∈Cn:F(z)=0}. In this paper, we prove existence integer solutions with prime coordinates to equation F(x1,…,xn)=0 provided that F satisfies suitable local conditions n−dimVF∗≥283452d3(2d−1)24d. Our result improves on what was known previously due Cook Magyar, which required n−dimVF∗ an exponential tower in d.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation by Cubes of Primes and an Almost Prime

Let λ1, . . . , λs be non-zero with λ1/λ2 irrational and let S be the set of values attained by the form λ1x 3 1 + · · ·+ λsxs when x1 has at most 6 prime divisors and the remaining variables are prime. In the case s = 4, we establish that most real numbers are “close” to an element of S. We then prove that if s = 8, S is dense on the real line.

متن کامل

On Relatively Prime Subsets, Combinatorial Identities, and Diophantine Equations

Let n be a positive integer and let A be a nonempty finite set of positive integers. We say that A is relatively prime if gcd(A) = 1, and that A is relatively prime to n if gcd(A, n) = 1. In this work we count the number of nonempty subsets of A that are relatively prime and the number of nonempty subsets of A that are relatively prime to n. Related formulas are also obtained for the number of ...

متن کامل

The density of rational points on non-singular hypersurfaces, I

For any n > 3, let F ∈ Z[X0, . . . , Xn] be a form of degree d > 5 that defines a non-singular hypersurface X ⊂ P. The main result in this paper is a proof of the fact that the number N(F ;B) of Q-rational points on X which have height at most B satisfies N(F ;B) = Od,ε,n(B ), for any ε > 0. The implied constant in this estimate depends at most upon d, ε and n. New estimates are also obtained f...

متن کامل

The density of rational points on non-singular hypersurfaces, II

For any integers d, n ≥ 2, let X ⊂ P be a non-singular hypersurface of degree d that is defined over Q. The main result in this paper is a proof that the number NX(B) of Q-rational points on X which have height at most B satisfies NX(B) = Od,ε,n(B n−1+ε), for any ε > 0. The implied constant in this estimate depends at most upon d, ε and n. Mathematics Subject Classification (2000): 11D45 (11G35...

متن کامل

Diophantine Approximation by Primes

We show that whenever δ > 0 and constants λi satisfy some necessary conditions, there are infinitely many prime triples p1, p2, p3 satisfying the inequality |λ0 + λ1p1 + λ2p2 + λ3p3| < (max pj)−2/9+δ. The proof uses Davenport–Heilbronn adaption of the circle method together with a vector sieve method. 2000 Mathematics Subject Classification. 11D75, 11N36, 11P32.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Duke Mathematical Journal

سال: 2022

ISSN: ['1547-7398', '0012-7094']

DOI: https://doi.org/10.1215/00127094-2021-0023